UNIT - 1

OPERATIONAL AMPLIFIER FUNDAMENTALS

1.1 Basic operational amplifier circuit-

hT basic circuit of an operational amplifier is as shown in above fig. has a differential amplifier input stage and an emitter follower output. Supply voltages $+\mathrm{V}_{\mathrm{cc}}$ and $-\mathrm{V}_{\mathrm{cc}}$ are provided. Transistors Q_{1} and Q_{2} constitute a differential amplifier, which produces a voltage change as the collector of Q_{2} where a difference input voltage is applied to the bases of Q_{1} and Q_{2}. Transistor Q_{2} operates as an emitter follower to provide low output impedance.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{RC}}-\mathrm{V}_{\mathrm{BE} 3} \\
& =\mathrm{V}_{\mathrm{cc}}-\mathrm{I}_{\mathrm{C} 2} \mathrm{R}_{\mathrm{c}}-\mathrm{V}_{\mathrm{BE}}
\end{aligned}
$$

Assume that Q_{1} and Q_{2} are matched transistors that are they have equal V_{BE} levels and equalcurrent gains.

With both transistor bases at ground level, the emitter currents are equal and both $\mathrm{I}_{\mathrm{E} 1}$ and $\mathrm{I}_{\mathrm{E} 2}$ flow through the common emitter resistor Re_{E}.

The emitter current is given by:-

$$
\mathrm{I}_{\mathrm{E} 1}+\mathrm{I}_{\mathrm{E} 2}=\mathrm{V}_{\mathrm{RE}} / \mathrm{Re}_{\mathrm{E}}
$$

With Q_{1} and Q_{2} bases grounded,

$$
\begin{gathered}
0-\mathrm{V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{RE}}+\mathrm{V}_{\mathrm{EE}}=0 \\
\mathrm{~V}_{\mathrm{EE}}-\mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{RE}} \\
\mathrm{~V}_{\mathrm{RE}}=\mathrm{V}_{\mathrm{EE}}-\mathrm{V}_{\mathrm{BE}} \\
\mathrm{I}_{\mathrm{E} 1}+\mathrm{I}_{\mathrm{E} 2}=\frac{\mathrm{wEE}-\mathrm{wBE}}{\mathbb{R E}}- \\
\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{E}}=4.7 \mathrm{~K}, \mathrm{R}_{\mathrm{c}}=6.8 \mathrm{~K}, \mathrm{~V}_{\mathrm{BE}}=0.7, \\
\mathrm{I}_{\mathrm{E} 1}+\mathrm{I}_{\mathrm{E} 2}=(10-0.7) / 4.7 \mathrm{~K}+2 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{E} 1}=\mathrm{I}_{\mathrm{E} 2}=1 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{c} 2}=\mathrm{I}_{\mathrm{E} 2}=1 \mathrm{~mA} \\
\mathrm{~V}_{\mathrm{o}}=10-1 \mathrm{~mA} \times 6.8 \mathrm{~K}-0.7 \\
\mathrm{~V}_{\mathrm{o}}=2.5 \mathrm{~V}
\end{gathered}
$$

If a positive going voltage is applied to the non-inverting input terminal, Q_{1} base is pulled up by the input voltage and its emitter terminal tends to follow the input signal. Since Q_{1} and Q_{2} emitters are connected together, the emitter of Q_{2} is also pulled up by the positive going signal at the non-inverting input terminal. The base voltage of Q_{2} is fixed at ground level, so the positive going movement at its emitter causes a reduction in its base-emitter voltage ($\mathrm{V}_{\mathrm{BE} 2}$). The result of the reduction in $\mathrm{V}_{\mathrm{BE} 2}$ is that its emitter current is reduced and consequently its collector current is reduced.

Positive going input at the base of Q_{1} reduces $\mathrm{I}_{\mathrm{c} 2}$ by 0.2 mA (from 1 mA to 0.8 mA)

$$
\mathrm{VO}=10-(0.8 \mathrm{~mA} \times 6.8 \mathrm{~K} \Omega)-0.7=3.9 \mathrm{~V}
$$

It is seen that a positive going signal at pin 3 has produced a positive going output voltage
A basic operational amplifier circuit consists of a differential amplifier stage with two input terminals and a voltage follower output stage. The differential amplifier offers high impedance at both input terminals and it produces voltage gain. The output stage gives the op-amp low op output impedance. A practical op-amp circuit is much more complex than the basic circuit.

The circuit is designed to have a $\mathrm{V}_{\text {CE }}$ of 5 V across Q 2 and Q 4 . With a $\pm 10 \mathrm{~V}$ supply and the bases of Q1 and Q2 at ground level, the voltage drops across R1 and R4 is 5.7 V and 4.3 V respectively. If the input voltage at Q1 base goes down to -4 V , the output terminal and Q2 base also goes down to -4 V as the output follows the input.

This means that the emitter terminals of Q 1 and Q 2 are pushed down from -0.7 to -4.7 V . Consequently, the collector of Q 4 is pushed down by 4 V , reducing $\mathrm{V}_{\mathrm{CE} 4}$ from 5 V to 1 V . Although Q 4 might still be operational with a V_{CE} of 1 V , it is close to saturation. It is seen that there is a limit to the negative going input voltage that can be applied to the op-amp if the circuit is to continue to function correctly.

There is also a limit to positive going input voltages. Where $\mathrm{V}_{\mathrm{B} 1}$ goes to +4 V , the voltage drop across resistor R1 must be reduced to something less than 1 V , in order to move $\mathrm{V}_{\mathrm{B} 2}$ and $\mathrm{V}_{\mathrm{E} 3}$ up by 4 V to follow the input. This requires a reduction in $\mathrm{I}_{\mathrm{c} 2}$ to a level that makes Q 2 approach cutoff. h巴 input voltage cannot be allowed to become large enough to drive Q 2 into cutoff.

The maximum positive going and negative going input voltage that may be applied to an op-amp is termed as its input range.

OUTPUT VOLTAGE RANGE

The maximum voltage swing is limited by the input voltage The output voltage can swing in a positive or negative direction depe the supply voltage and the op-amp output circuitry. Referring complementary emitter follower output stage in fig., it would appear t hat the
output voltage should be able to rise until Q5 is near saturation and fall until Q6 approaches saturation.
But because of the circuits that control the output stage, is normally not possible to drive the output transistors close to saturation levels.

A rough approximation for most op-amps is that the maximum output voltage swing is approximately equal to 1 V less than the supply voltage.

For the 741 op-amp with a supply of $\pm 15 \mathrm{~V}$, the data sheet lists the output voltage swing as typically $\pm 14 \mathrm{~V}$.

COMMON MODE AND SUPPLY REJECTION

Common mode rejection:-

change in the output voltage at the emitter of Q_{3}.
The common mode gain is given by,

$$
A_{\mathrm{com}}=\frac{W_{\mathrm{ocm}}}{W_{\mathrm{ism}}}
$$

The success of the op-amp rejecting common mode inputs is defined in the common mode rejection ratio (CMRR). This is the ratio of the open loop gain A to the common mode gain A_{cm}.

$$
\mathrm{CMRR}=\mathrm{A} / \mathrm{A}_{\mathrm{cm}}
$$

It is expressed in decibel, $C M R R=20 \log A / A_{c m} d B$. The typical value of 741 is 90 dB .

Significance:

The CMRR expresses the ability of an op-amp to reject a common mode signal.
Higher the value of CMRR, better is its ability to reject a common mode signal. Thus any unwanted signals such as noise or pick-
up would appear as common to both the input terminals and therefore the output due to this signal would be zero. Hence no undesirable noise signal will be amplified along with the desired signal.

Consider the non-inverting amplifier circuit as shown below, with the input terminal grounded. The circuit output should also be at ground level. Now, suppose a sine wave signal is picked up at both inputs, this is a common mode input. The output voltage should tend to be,

$$
\mathrm{V}_{\mathrm{ocm}}=\mathrm{A}_{\mathrm{cm}} \times \mathrm{V}_{\mathrm{icm}}
$$

Any output voltage will produce a feedback voltage across resistor R_{i}, which results in a differential voltage at the op-amp input terminals. The differential input produces an output which tends to cancel the output voltage that caused the feedback. The differential input voltage required to cancel $\mathrm{V}_{\mathrm{ocm}}$ is,

$$
\mathrm{V}_{\mathrm{d}} \stackrel{\text { Vocm }}{=}=\mathrm{A}_{\mathrm{cm}} \mathrm{X} \frac{\text { Acmx Vicor }}{A}
$$

$\mathrm{V}_{\text {dis }}$ the feedback voltage developed across R_{1}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{dc}}=\frac{\mathrm{R} 1}{\mathrm{R} 1+\mathrm{R}} \mathrm{xV}_{\text {ocm }}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {o(cmul }}=\frac{W i \mathrm{~cm}}{\text { CNRR }} \times \mathrm{Af}_{\mathrm{f}}
\end{aligned}
$$

Problem

A $741 \mathrm{op}-\mathrm{amp}$ is used in a non-inverting amplifier with a voltage of 50 . Calculate the typical output voltage that would result from a common mode input with a peak level of 100 mV .

Solution

Typical value of CMRR for $741 \mathrm{op}-\mathrm{amp}=90$

dB.
CMRR $=$ antilog $\frac{30}{20}=31623$
We have,

$$
\mathrm{V}_{\mathrm{ocm}}=\frac{\mathrm{Wincm}_{\mathrm{cm}}^{C M R}}{} \times \mathrm{A}_{\mathrm{f}}
$$

$$
\begin{aligned}
& =\frac{100 \mathrm{raV}}{\mathrm{CMRR}} \times 50 \\
\text { Therefore, } \quad \mathrm{V}_{\mathrm{ocm}} & =158 \mu \mathrm{~V}
\end{aligned}
$$

POWER SUPPLY VOLTAGE REJECTION:

Any change in $-V_{E E}$ would produce a change in the voltage drop across R_{E}. This would result in an alteration in $\mathrm{I}_{\mathrm{E} 1}, \mathrm{I}_{\mathrm{E} 2}$ and $\mathrm{I}_{\mathrm{C} 2}$. The change in $\mathrm{I}_{\mathrm{C} 2}$ would alter V_{RC} and thus affect the level of the dc output voltage. The variation in $-\mathrm{V}_{\text {EE }}$ would have an effect similar to an input voltage.

This can be minimized by replacing the emitter resistor with constant current circuit (or constant current tail) as shown in fig below.

A constant voltage drop is maintained across resistor R_{E} by providing a constant voltage V at Q_{4} base. Now, any change in supply voltage is developed across the collector-emitter terminal of Q4 and the emitter currents of Q_{1} and Q_{2} are not affected. Even with such circuitry, variations in $\mathrm{V}_{\text {cc }}$ and Vee do produce some changes at the output. The Power Supply Rejection Ratio (PSRR) is a measure of how effective the op-amp is in dealing with variations in supply voltage.

A constant voltage drop is maintained across resistor R_{E} by providing a constant voltage V at Q_{4} base. Now, any change in supply voltage is developed across the collector-emitter terminal of Q_{4} and the emitter currents of Q_{1} and Q_{2} are not affected. Even with such circuitry, variations in V_{CC} and $\mathrm{V}_{\text {EE }}$ do produce some changes at the output. The Power Supply Rejection Ratio (PSRR) is a measure of how effective the op-amp is in dealing with variations in supply voltage.

If a variation of 1 V in V_{CC} or V_{EE} causes the output to change by 1 V , then the supply voltage rejection ratio is $1 \mathrm{~V} / \mathrm{V}$. If output changes by 10 mV when one of the supply voltages hanges by 1 V , then SVRR is $10 \mathrm{mV} / \mathrm{V}$. In $741 \mathrm{op}-\mathrm{amps}$ it is $30 \mathrm{mV} / \mathrm{V}$.

Problem

A 741 op-amp uses a $\pm 15 \mathrm{~V}$ supply with $2 \mathrm{mV}, 120 \mathrm{~Hz}$ ripple voltage superimposed.
Calculate the amplitude of the output voltage produced by the power supply ripple.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}}(\mathrm{rip}) & =\mathrm{Vs}(\mathrm{rip}) \times \mathrm{PSRR} \\
& =2 \mathrm{mV} \times 30 \mu \mathrm{~V} / \mathrm{V} \\
& =60 \mathrm{nV}
\end{aligned}
$$

OFFSET VOLTAGE AND CURRENTS:

Input offset voltage

Basic operational circuit connected to function as a voltage follower as shown in fig 2 . The output terminal and the inverting terminal follow the voltage at the non-inverting input.

For the output voltage to be exactly equal to the input voltage, transistors Q 1 and Q 2 must be perfectly matched. The output voltage can be calculated as,

$$
\begin{gathered}
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{BE} 2} \\
\text { With } \quad \mathrm{V}_{\mathrm{BE} 1}=\mathrm{V}_{\mathrm{BE}} \rightarrow \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}
\end{gathered}
$$

If the input voltage is zero then output voltage is also zero. i.e., $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}$.
Suppose that the transistors are not perfectly matched and that $\mathrm{V}_{\mathrm{BE} 1}=0,7 \mathrm{~V}$ while $\mathrm{V}_{\mathrm{BE} 2}=0.6 \mathrm{~V}$ with the input at ground level,

$$
\mathrm{V}_{\mathrm{o}}=0-0.7 \mathrm{~V}+0.6 \mathrm{~V}=-0.1 \mathrm{~V}
$$

This unwanted output is known as 'Output Offset Voltage'. To set V_{o} to ground level the input would have to be raised to +0.1 V (i.e. the input voltage applied to reduce the output offset voltage to zero) is known as 'Input Offset Voltage'. Although transistors in integrated circuits are very well matched, there is always some input offset voltage. The typical offset voltage is listed as 1 mV on 741 data sheet ($\mathrm{max}-5 \mathrm{mV}$).

Input Offset Current

If the input transistors of an op-amp not being perfectly matched, as well as the transistor base-emitter voltages being unequal, the current gain of one transistor may not be exactly equal to that of the other. Thus, when both transistors have equal levels of collector current, the base current may not be equal. So, the algebraic difference between these input currents (base currents) is referred as 'Input Offset Current (Ios) '.

$$
\operatorname{Ios}^{f} \ddagger \mathrm{I}_{\mathrm{B} 1}-\mathrm{I}_{\mathrm{B} 2} \mathrm{I}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{B} 1}=\text { Current in the non-inverting input } \\
& \mathrm{I}_{\mathrm{B} 2}=\text { Current in the inverting input }
\end{aligned}
$$

This typical value for $741 \mathrm{op}-\mathrm{amps}$ is 20 nA (min) and the max is 200 nA .

Input Bias Current (\mathbf{I}_{B})

Input bias current is the average of the currents that flow in to the inverting and non-inverting input terminals of the op-amp.

$$
\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{IB} 1+1 \mathrm{EX}}{2}
$$

Typical value of input bias current I_{B} for 741 op -amps is 80 nA and max is 600 nA .

Offset Nulling

One method of dealing with input offset voltage and current is as shown in fig below, which shows a low resistance potentiometer $\left(\mathrm{R}_{\mathrm{P}}\right)$ connected at the emitters of Q1 and Q2. Adjustment of RP alters the total voltage drop from each base to the common point at the potentiometer moving contact, because an offset voltage is produced by the input offset current. This adjustment can null the effects of both input offset current and input offset voltage.

INPUT AND OUTPUT IMPEDANCE

Input Impedance :

The input impedance offered by any op-amp is substantially modified by its application. From negative feedback theory, the impedance at the op-amp input terminal becomes,

$$
Z_{i p}=(1+A \beta) Z_{i}
$$

$Z_{i}=$ the op-amp input impedance without negative feedback.

$$
\begin{aligned}
& A=\text { op-amp open loop gain, typical value for } 741 \text { op-amp is } 50000 \\
& \beta=\text { Feed back factor }
\end{aligned}
$$

$\mathrm{R}_{\mathrm{i}}=$ Input impedance, typical value for $741 \mathrm{op}-\mathrm{amp}$ is $0.3 \mathrm{M} \Omega$

Output impedance:

The typical output resistance specified for the $741 \mathrm{op}-\mathrm{amp}$ is 75Ω. Any stray capacitance in parallel with this is certain to have a much larger resistance than 75Ω. So 75Ω is also effectively the amplifier output impedance.

The output impedance of the op-amp is affected by ne gativfeedback.
$\mathrm{Z}_{\text {out }}=\frac{70}{(1+A \beta)}$
$Z_{0}=o p-a m p$ output impedance without negative feedback

Slew Rate

The slew rate (S) of any op-amp is the maximum rate at which the output voltage can change. When the slew rate is too slow for the input, distortion results. This is illustrated in fig below, which shows a sine wave input to a voltage follower producing a triangular output waveform. The triangular wave results because the opamp output simply cannot fast enough to follow thee sine wave input.

$$
s=\frac{\Delta V_{o}}{t}
$$

The typical slew rate of the $741 \mathrm{op}-\mathrm{amp}$ is $0.5 \mathrm{~V} / \mu \mathrm{s}$. This means that $1 \mu \mathrm{~s}$ is required of output to change by 0.5 V

Frequency limitations

Fig below shows the graph of open loop gain (A) plotted versus frequency (f) for a 741 op -amp.

$$
\begin{aligned}
& \mathrm{f}=100 \mathrm{~Hz}, \mathrm{~A}=80 \mathrm{~dB} \\
& \mathrm{f}=1 \mathrm{KHz}, \mathrm{~A}=60 \mathrm{~dB}
\end{aligned}
$$

The open loop gain (A) falls by 20 dB when the frequency increases from 100 Hz to 1 KHz . The ten times increase in frequency is termed a decade. So, the rate of the gain is said to be 20 dB per decade. Where internal gain equals to or greater than 80 dB is required for a particular application, it is available with a 741 only for signal frequencies up to $\approx 100 \mathrm{~Hz}$. A greater than 20 dB is possible for signal frequencies up to \approx 90 kHz . Other op-amp maintains substantial internal gain to much higher frequencies than the 741 .

1.2 OP-AMP AS DC AMPLIFIERS: Biasing op-amps

Bias Current Paths :

Op-amps must be correctly biased if they are to function properly. The inputs of most op-amps are the base terminals of the transistors in a differential amplifier. Base currents must flow into these terminals for the transistors to be operational.

One of the two input terminals is usually connected in some way to the op-amp output to facilitate negative feedback. The other input might be biased directly to ground via a signal source.

From the fig given below, current $\mathrm{I}_{\mathrm{B} 1}$ flows into the op-amp via the signal source while $\mathrm{I}_{\mathrm{B} 2}$ flows from the output terminal. The next fig shows a situation in which resistor R1 is added in series with inverting terminal to match signal source resistance Rs in series with the non-inverting terminal.

Op-amp input currents produce voltage drops $\mathrm{I}_{\mathrm{B} 1} \times \mathrm{R}_{\mathrm{s}}$ and $\mathrm{I}_{\mathrm{B} 2} \times \mathrm{R}_{1}$ across the resistors. Rs and R 1 should be selected as equal resistors so that the resistor voltage drops are approximately equal. Any difference in these voltage drops will have the same effect as an input offset voltage.

Maximum Bias Resistor Values:

If very small resistance values are selected for Rs and R1 in the circuit the voltage drops across them will be small. On the other hand, if Rs and R1 are very large the voltage drops IB1 \times Rs and IB2 \times R1 might be several volts. For good bias stability the maximum voltage drop across these resistors should be less than the typical forward biased $V_{B E}$ level for the op-amp input transistors.

Usually the resistor voltage drop made at least ten times smaller than $V_{B E}$

$$
\mathrm{I}_{\mathrm{B}(\max)} \times \mathrm{R}_{(\max)} \approx \mathrm{V}_{\mathrm{BE}} / 10 \approx 0.07 \mathrm{~V}
$$

F ronme 741 data sheet $\mathrm{I}_{\mathrm{B}(\max)}=500 \mathrm{nA}$.
Therefore, $\quad \mathrm{R}_{(\max)} \approx 0.07 / 500 \mathrm{nA} \approx 140 \mathrm{k} \Omega$.
This is a maximum value for the bias resistors for a $741 \mathrm{op}-\mathrm{amp} . \mathrm{R}$ (max) can be calculated using the specified $\mathrm{I}_{\mathrm{B}}(\max)$ for the particular op-amp.

$$
\mathrm{R}(\max) \approx 0.1 \mathrm{~V}_{\mathrm{BE}} / \mathrm{I}_{\mathrm{B}}(\max)
$$

1.3 Direct - Coupled Voltage Followers

As shown in the figure the resistor R 1 is frequently included in series with the inverting terminal to match the source resistance Rs in series with the non-inverting terminal.

The input and output impedances of the voltage follower are

$$
\mathrm{Z}_{\mathrm{in}}=(1+\mathrm{A}) \mathrm{Z}_{\mathrm{i}} \quad \text { and } \quad \mathrm{Z}_{\mathrm{out}}=\mathrm{Z}_{\mathrm{o}} \backslash(1+\mathrm{A})
$$

The voltage follower has very high input impedance and very low output impedance. Therefore, it is normally used to convert a high impedance source to low output impedance. In this situation it is said to be used as a 'buffer' between the high impedance source and the low impedance load. Thus, it is termed a 'buffer amplifier'.

From the fig, a signal voltage is potentially divided across R_{s} and R_{L} when connected directly to a load. But when the load and source are joined by the voltage follower, it presents its very high impedance to the signal source. Because $\mathrm{Z}_{\text {in }}$ is normally very much larger than Rs, there is virtually no loss at this point and effectively all the input appears at the op-amp input.

The voltage follower output is

$$
V_{d}=\frac{V_{i}}{A} \quad \text { And } \quad V_{0}=V_{A}-V_{d}
$$

$$
\begin{aligned}
\therefore V_{0}=V_{i}-\frac{W_{i}}{A} & \\
& \Rightarrow V_{0}=V_{i}\left(1-\frac{1}{A}\right)
\end{aligned}
$$

The output voltage can be thought of as being divided across RL and the voltage follower output impedance $Z_{\text {out }}$. But $Z_{\text {out }}$ is much smaller than any load resistance that might be connected. So, there is effectively no signal loss and all V_{i} appears as V_{o} at the circuit output.

Example:

1. A voltage follower using a $741 \mathrm{op}-\mathrm{amp}$ is connected to a signal source via a $47 \mathrm{k} \Omega$. Select a suitable value for resistor R1. Also calculate the maximum voltage drop across each resistor and the maximum offset voltage produced by the input offset current.
$R_{1}=R_{s}=47 k \Omega$
From a 741 data sheet $\mathrm{I}_{\mathrm{B}(\max)}=500 \mathrm{nA}$ and $\mathrm{I}_{\mathrm{i}(\text { offset })}=20 \mathrm{nA}$
$\|_{B(\max) 1} \times R_{s}=I_{B(\max) 2} \times R_{s}$
$=500 n \mathrm{~A} \times 4.7 \mathrm{k} \Omega$
$=23.5 \mathrm{mV}$
$V_{\text {aloffuet })}=\mathcal{A}_{\text {i(offast) }} \times\left(R_{s}\right.$ or $\left.R_{1}\right)$
$=20 n A \times 47 k \Omega$
$=0.94 \mathrm{mV}$

Problem 2

The voltage follower in the above problem has a 1 V signal and a $20 \mathrm{k} \Omega$ load. Calculate the load voltage
(a) When the load is directly connected to the source.
(b) When the voltage follower is between the load and the source.

Solution: (a) $F_{L}=\frac{\frac{W}{\vec{i}} \mathrm{~N}_{\mathrm{L}}}{R_{\mathrm{B}}+R_{\mathcal{L}}}=\frac{1 \times 20 \mathrm{k}}{(20 \mathrm{k}+27 \mathrm{k})}=298 \mathrm{mV}$
(b) For 741 op -amp, $A=2 \times 10^{5}{ }_{0} Z_{\text {im }}=2 M \Omega_{0} Z_{0 \mathrm{owt}}=75 \Omega$
$z_{\text {imf }}=(1+A) Z_{i m}=\left(1+2 \times 10^{5}\right) \times 2 M$
$=4 \times 10^{11} \mathrm{Q}$
$V_{i}=\frac{V_{\mathrm{B}} \times Z_{\text {im }}}{Z_{\text {imf }}+R_{S}}=\frac{1 \times 4 \times 10^{11}}{4 \times 10^{11}+47 \mathrm{k}} \mathbb{N}$ 1Veffectively
$V_{0}=V_{V}\left(1-\frac{1}{A}\right)=1\left(1-\frac{1}{200000}\right)=1$ Veffectively
$Z_{\text {outf }}=\frac{Z_{0}}{1+A}=\frac{75}{1+200000}=37 \times 10^{-5} \Omega$
$V_{\mathbb{L}}=\frac{V_{\text {C }} \times R_{\text {I }}}{R_{\text {L }}+Z_{\text {ourf }}}=\frac{1 \times 20 \mathrm{k}}{20 \mathrm{~K}+37 \times 10^{-5}} \approx 1 \mathrm{~V}$
When the voltage follower is used with a potential divider to produce a low impedance dc voltage source, as in fig (a), load resistor R_{L} is directly connected in series with R_{1} to derive a voltage V_{L} from the supply V_{CC}. This simple arrangement has the disadvantage that the V_{L} varies if the load resistance changes. In fig (b), the presence of the voltage follower maintains the VL constant regardless of the load resistance.

Example:

A $1 \mathrm{k} \Omega$ load resistor is to have 5 V developed across it from a 15 V source. Design suitable circuits as shown above circuit fig (a) and (b) and calculate he load voltage variation in each case when the load resistance varies by -10%. Use a 741 op-amp.

Solution: For circuit in fig. (a)
$J_{z}=\frac{V_{z}}{R_{z}}=\frac{5}{1 k}=5 \mathrm{~mA}$
$V_{1}=V_{C D}-V_{I}=15-5=10 \mathrm{~V}$
$R_{R}=\frac{V_{1}}{J_{I}}=\frac{10}{5 m}=2 \mathrm{kQ}$
When R_{L} changes by -10%
$V_{V}=\frac{V_{C D} \times\left(R_{L}-10 \%\right)}{\left(R_{Z}-10 \%\right)+R_{f}}=\frac{15 \times(1 k-10 \%)}{(1 k-10 \%)+2 k}=4.66 \mathrm{~V}$
For circuit in fig. (b) $V_{2}=V_{2}=5 V_{\text {and }} V_{1}=V_{00}-V_{2}=10 \mathrm{~V}$
For $\left.741 \mathbb{I}_{B(\max)}=500 \mathrm{nAand}\right]_{2}=100 \mathrm{I}_{\mathrm{B}(\max)}=50 \mathrm{~mA}$
$R_{2}=\frac{V_{2}}{I_{2}}=\frac{5}{50 \mathrm{k}}=100 \mathrm{k} \Omega$
$R_{1}=\frac{V_{1}}{l_{2}}=\frac{10}{50 \mathrm{~K}}=200 \mathrm{k} \Omega$
When R_{L} changes by -10%
$V_{1}=V_{2}=5$ Veffectively

Voltage Follower compared to an Emitter Follower

> Both voltage follower and the emitter follower are buffer amplifiers.
$>$ The voltage follower has a much higher input impedance and much lower output impedance than the emitter follower.
$>$ The disadvantage of the emitter follower is the dc voltage loss due to the transistor base-emitter voltage drop. But the voltage follower dc loss of $\mathrm{V}_{\mathrm{i}} / \mathrm{A}$ is insignificant.
$>$ There can also be a greater loss of ac signal voltage in the emitter follower than in the voltage follower because of the lower input impedance and higher output impedance with the emitter follower.

1.4 Direct coupled non-inverting amplifiers:

The voltage gain of a non-inverting amplifier,
$A_{f}=1+\frac{\mathbb{R} f}{R_{2}}$

As always with a bipolar op-amp, design commences by selecting the potential divider current (I_{2}) very much larger than the maximum input bias current $\mathrm{I}_{\mathrm{B}}(\max)$.

$$
\text { Because } \left.\mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{i}} \text { (virtual short }\right)
$$

$$
\mathrm{R}_{2}=\mathrm{V}_{\mathrm{i}} / \mathrm{I}_{2}
$$

And V_{o} appears across $\left(R_{2}+R_{f}\right)$.

$$
\text { So, } \quad \mathrm{R}_{2}+\mathrm{R}_{\mathrm{f}}=\mathrm{V}_{\mathrm{o}} / \mathrm{I}_{2}
$$

Finally, to equalize the $I_{B} R$ voltage drops at the op-amp input, $R 1$ is calculated as

$$
\mathrm{R}_{\mathrm{com}} \approx \mathrm{R} 2 \| \mathrm{R} 3
$$

If R1 is not very much larger than the source resistance,
$\mathrm{Rs}+\mathrm{R}_{\mathrm{coñ̈r}} \mathrm{R} 2$ Il R 3

Example

Using a $741 \mathrm{op}-\mathrm{amp}$ design a non-inverting amplifier to have a voltage gain of approximately 66 . The signal amplitude is to be 15 mV .

Solution :

$I_{S(\max)}=500 \mathrm{nA} \therefore I_{2}=100 \times I_{B(\max)}=50 \mathrm{HA}$

$$
R_{2}=\frac{V_{\mathrm{B}}}{l_{2}}=\frac{15 m}{50 \mathrm{~m}}=3000
$$

$$
V_{0}=A_{w} \times V_{V}=66 \times 15 \mathrm{~m}=990 \mathrm{mV}
$$

$$
\begin{aligned}
& R_{2}+R_{f}=\frac{V_{0}}{V_{2}}=\frac{990 \mathrm{~m}}{50 \mathrm{~m}}=19.8 \mathrm{kQ} \\
& R_{f}=\left(R_{2}+R_{f}\right)-R_{2}=19.5 \mathrm{kQ} \\
& \therefore R_{\mathrm{com}}=R_{-} 2 \| R_{-} f \approx 295 \Omega
\end{aligned}
$$

Performance

The input impedance of the op-amp circuit is, 1
$Z_{i m f}=(1+A \beta) Z_{i n}$
$\beta=\frac{R_{1}}{R_{1}+R_{f}}=\frac{1}{A_{f}}$

$\therefore Z_{\overline{\mathrm{a} j f}}=\left(1+\frac{A}{A_{f}}\right) Z_{\overline{i n}}$
The impedance seen from the signal source is,

$$
\mathbb{Z}_{\overline{i z m f}}=R_{\text {com }}+\mathbb{Z}_{\mathrm{amf}}
$$

Since $\bar{Z}_{\text {imf }}$ is always much larger than $\mathrm{R}_{\text {com }}$ in a non-inverting amplifier, the inclusion of R1 normally makes no significant difference.
The output impedance of the op-amp circuit is,

$$
\begin{aligned}
& Z_{\text {outf }}=\frac{Z_{\text {out }}}{1+A \beta} \\
& \because \beta=\frac{1}{A_{f}}: Z_{\text {oux } f}=\frac{Z_{\text {out }}}{1+\frac{A}{A_{f}}}
\end{aligned}
$$

Problem

Calculate the input impedance of the non-inverting amplifier as shown below. Use the typical parameters for the LF 353 op-amp.

Solution: For LF $353 \mathrm{~A}=100000$ and $\mathrm{Z}_{\mathrm{im}}=10^{12} \Omega$
$\because Z_{\operatorname{ing}}=\left(1+\frac{A}{A_{f}}\right) Z_{\text {im }} \approx 1.5 \times 10^{15} \mathbf{Q}$
and $Z_{i m f}^{\prime \prime}=R_{\text {com }}+Z_{\text {imf }} \approx 1.5 \times 10^{15} \Omega$

1.5 Direct - Coupled Inverting Amplifier:

Resistor $\mathrm{R}_{\text {com }}$ is included at the non-inverting terminal to equalize the dc voltage drops due to the input bias currents approximately equal
resistance should be 'seen' when 'looking out' from input terminal of the op-amp .

Therefore, $\mathrm{R}_{\mathrm{com}} \approx \mathrm{R}_{1}{\| \mathrm{R}_{\mathrm{f}}}$

And if R_{f} is not very much larger than the source resistance, then
$\mathrm{R}_{\mathrm{com}} \approx\left(\mathrm{R}_{1}=\mathrm{R}_{\mathrm{s}}\right) \mathbb{\|} \mathrm{R}_{\mathrm{f}}$

As with other bipolar op-amp circuits, the resistor current $\left(I_{1}\right)$ is first selected very much larger than the maximum input bias current ($\mathrm{I}_{\mathrm{B} \max }$).
$R_{1}=\frac{V_{1}-V_{2}}{l_{1}}=\frac{V_{1}}{l_{1}}\left[\because V_{2}=0\right]$
Since op-amp input terminal does not draw any current so, I_{1} flows to feedback resistance.
$\mathrm{R}_{\mathrm{f}}=\mathrm{V}_{\mathrm{o}} / \mathrm{I}_{1}$

Example

Design an inverting amp using a 741 op -amp. The voltage gain is to be 50 and the output voltage amplitude is to be 2.5 V

Solution:

$$
\begin{aligned}
& I_{B(\text { max })}=500 \mathrm{nA} \therefore J_{2}=100 \times I_{B(\max)}=50 \mathrm{hA} \\
& V_{A}=\frac{V_{0}}{A_{f}}=\frac{2.5}{50}=50 \mathrm{mV} \\
& R_{1}=\frac{V_{i}}{l_{1}}=\frac{50 \mathrm{~m}}{50 \mathrm{~A}}=1 \mathrm{kQ}
\end{aligned}
$$

The output impedance of the inverting amplifier is determined exactly as for any other op-amp circuit.
$Z_{\text {Guaf } f}=\frac{Z_{\text {oux }}}{1+A \beta}$ and $\beta=\frac{R_{1}}{R_{1}+R_{f}}$
$Z_{\text {outf }}=\frac{Z_{0}}{\left(1+\frac{A E_{1}}{E_{1}+E_{f}}\right)}$
$w h e n R_{f} \gg R_{1} Z_{\text {owt }}=\frac{Z_{\text {out }}}{1+\frac{A}{A_{f}}}$

1.6 Summing Amplifiers:

Inverting Summing Circuit:

Fig below shows a circuit that amplifies the sum of two or more inputs and since inputs are applied to the inverting input terminal, hence the amplifier is called 'Inverting Summing Amplifier'. $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}$ and V_{c} are three inputs applied to the inverting terminal through resistors $\mathrm{R}_{\mathrm{a}}, \mathrm{R}_{\mathrm{b}}$ and R_{c}. Applying Kirchoff's law at node V2
$d_{a}+d_{b}+d_{a}=d_{f}$
$\Rightarrow \frac{V_{a}-V_{2}}{R_{a}}+\frac{V_{b}-V_{2}}{R_{b}}+\frac{V_{6}-V_{2}}{R_{g}}=\frac{V_{2}-V_{G}}{R_{f}}$

Because of Virtual Ground, $\mathrm{V}_{2}=0$

$$
\begin{aligned}
& \Rightarrow \frac{V_{a}}{R_{a}}+\frac{V_{b}}{R_{b}}+\frac{V_{c}}{R_{c}}=\frac{-V_{c}}{R_{f}} \\
& \Rightarrow V_{\mathrm{c}}=-R_{f}\left(\frac{V_{\mathrm{c}}}{R_{\mathrm{a}}}+\frac{V_{b}}{R_{b}}+\frac{V_{c}}{R_{\mathrm{c}}}\right) \\
& \nabla f R_{\text {ac }}=R_{b}=R_{c}=R t h e n V_{c}=\frac{-R_{f}}{R}\left(V_{a}+V_{b}+V_{\mathrm{a}}\right) \Rightarrow V_{\mathrm{c}}=A_{f}\left(V_{a}+V_{b}+V_{d}\right) \\
& \text { AlsoifR } R_{f}=R_{0} \text { then } V_{0}=\left(V_{a}+V_{b}+V_{d}\right)
\end{aligned}
$$

Andif $\frac{R_{f}}{R}=\frac{1}{n}$ wherenistheno. ofimputs. Heren $=3$
$\therefore \frac{R_{f}}{R}=\frac{1}{3} \Rightarrow V_{C}=-\frac{\left(V_{a x}+V_{b}+V_{e}\right)}{3}$
Here the output voltage is equal to the average of all the three inputs. Hence this can be used as an 'Averaging Circuit'.

Non-Inverting Summing Circuit:

Here the three inputs are connected to the non-inverting input through resistors of equal value R. The voltage V_{1} is determined using superposition theorem. Let V_{b} and V_{c} are grounded and let $V_{1 a}$ be at V_{1} due to V_{a}, corresponding voltage.
$V_{V_{a}}=\frac{V_{a} \times R \backslash 2}{R+R \backslash 2}$

Similarly when V_{a} and V_{c} are grounded, then
$\boldsymbol{V}_{1 b}=\frac{V_{b} \times R \backslash 2}{R+R \backslash 2}$
When V_{a} and V_{b} are grounded, then
$V_{1 c}=\frac{V_{c} \times R \backslash 2}{R+R \backslash 2}$
$V_{1}=V_{1 a}+V_{1 b}+V_{1 c}=\frac{V_{a}}{3}+\frac{V_{b}}{3}+\frac{V_{c}}{3}$

The output voltage is $V_{Q}=\left(1+\frac{R_{f}}{R_{2}}\right) V_{1}$
$V_{0}=\left(1+\frac{R_{f}}{R_{1}}\right)\left(\frac{V_{a}+V_{b}+V_{c}}{3}\right)$

If $\left(1+\frac{R_{f}}{R_{1}}\right)=3$ ie.theno.ofinputs
then $V_{C}=V_{a}+V_{b}+V_{c}$

Output voltage is equal to the sum of all the three input voltages.
If the gain of the amplifier is 1 I.e. $=1$, then the output is, $\left(1+\frac{R_{i}}{R_{1}}\right)$
$W_{0}=\frac{(\mathrm{Va}+\mathrm{Vb}+\mathrm{Vc})}{3}$

1.7 Difference Amplifier:

A difference amplifier or a differential amplifier amplifies the difference between two input signals. A differential amplifier is a combination of inverting and non-inverting configurations. V_{y} and V_{x} are two inputs applied to inverting and non-inverting input terminals respectively. Apply superposition theorem to determine the output voltage Vo.

When $\mathrm{V}_{\mathrm{x}}=0$, the configuration becomes an inverting amplifier and hence the output is $\mathrm{V}_{\mathrm{oy}}=\frac{R F}{R 1} \mathrm{~V}_{\mathrm{y}}$
When $\mathrm{V}_{\mathrm{y}}=0$, the configuration is a noninverting amplifier. Hence the output is,
$V_{\text {ox }}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{1}$
$V_{1}=\frac{R_{3}}{R_{2}+R_{3}} V_{\text {ze }}$
$\Rightarrow V_{\mathrm{Ox}}=\left(\frac{R_{3}}{R_{2}+R_{3}}\right)\left(1+\frac{R_{f}}{R_{1}}\right) V_{\mathrm{ze}}$
$\operatorname{Let} R_{23}=R_{1}$ and $R_{f}=R_{3}$, then $V_{\text {ox: }}=\frac{R_{f}}{R_{1}} V_{\text {s }}$
"The total output voltage is,

$$
V_{0}=V_{O y}+V_{o x}
$$

$$
=\frac{R_{f}}{R_{1}} V_{X x}-\frac{R_{f}}{R_{1}} V_{y}
$$

$$
\Rightarrow V_{C}=\frac{R_{f}}{R_{1}}\left(V_{x}-V_{y}\right)
$$

When RF and R1 are equal value resistors, the output is the direct difference of the two inputs. By selecting RF greater than R1 the output can be made an amplified version of the input difference.

Input Resistance

Problems with selecting the difference amplifier resistors as $\mathrm{R} 1=\mathrm{R} 2$ and $\mathrm{RF}=\mathrm{R} 3$ is that the two input resistances are unequal. The input resistance for voltage at inverting terminal is R1 as in the case of an inverting amplifier. At the op-amp non-inverting input terminal, the input resistance is very high, as it is for a non-inverting amplifier.

From the output voltage equation it is shown that he same result would be obtained if he ratio $\mathrm{RF} / \mathrm{R} 1$ is the same as $\mathrm{R} 3 / \mathrm{R} 2$ instead of making $\mathrm{RF}=\mathrm{R} 3$ and $\mathrm{R} 1=\mathrm{R} 2$.
Therefore, when the resistance of R 1 has been determined, $\mathrm{R} 2=\mathrm{R} 3$ can be made equal to R 1 , as long as the ratio of the resistance is correct. This will give equal input resistances at the two input terminals of the circuit.

There are two types of differential input resistance $\left(\mathrm{R}_{\text {ifdiff }}\right)$ and common mode input resistance $\left(\mathrm{R}_{\text {icom }}\right)$.

The differential input resistance is the resistance offered to a signal source which is connected directly across the input terminals. It is the sum of the two input resistances.
$\mathrm{R}_{\text {idaff }}=R_{1}+R_{2}+R_{3}$

below.

The common mode input resistance is the resistance offered to a signal source which is connected between the ground and both input terminals, that is, the parallel combination of the two input resistances.
$R_{\text {(} \mathrm{cmm}}=R_{1} \|\left(R_{2}+R_{3}\right)$

Common Mode Voltage

If the ratio R_{F} / R_{1} and R_{3} / R_{2} are not exactly equal, one input voltage will be amplified by a greater amount than the other. Also, the common mode voltage at one input will be amplified by a greater amount than that at the other input. Consequently, common mode voltages will not be completely cancelled. One way of minimizing the common mode input from a difference amplifier is as shown in the fig
R_{3} is made up of a fixed value resistor and a much smaller adjustable resistor . This allows the ratio $\mathrm{R}_{3} / \mathrm{R}_{2}$ to be adjusted to closely match $\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{1}$ in order to null the common mode output voltage to zero.

Output Level Shifting

R_{3} is connected to a $V B$ instead of grounding it in the usual way. To understand the effect of V_{B}, assume that both input voltages are zero. The voltage at the op-amp non-inverting input terminal will be $V_{f}=\frac{V_{B} \times R_{n}}{R_{1}+R_{n}}$

The voltage at the op-amp inverting input terminal will be,

$$
\mathrm{V}_{-}=\mathrm{V}_{+}
$$

The output will be, $\quad V o=\left(\frac{R_{a}+R_{F}}{R_{1}}\right) V+$
Substituting for $\mathrm{V}+$ and using the resistor relationships $\left(\frac{A F}{R 1}=\frac{R 3}{R 2}\right)$, the output voltage is ,

$$
V_{o}=V_{B}
$$

Therefore, if VB is adjustable, the dc output voltage level can be shifted as desired.

