UNIT 8

Z-Transforms - 2

8.1 Transform analvsis of LTI systems:

- We have defined the transfer function as the z-transform of the impulse response of an LTI system

$$
H(z)=\sum_{k=-\infty}^{\infty} h[k] z^{-k}
$$

- Then we have $y[n]=x[n] * h[n]$ and $Y(z)=X(z) H(z)$
- This is another method of representing the system
- The transfer function can be written as

$$
H(z)=\frac{Y(z)}{X(z)}
$$

- This is true for all z in the ROCs of $X(z)$ and $Y(z)$ for which $X(z)$ in nonzero
- The impulse response is the z-transform of the transfer function
- We need to know ROC in order to uniquely find the impulse response
- If ROC is unknown, then we must know other characteristics such as stability or causality in order to uniquely find the impulse response

System identification

- Finding a system description by using input and output is known as system identification
- Ex1: find the system, if the input is $x[n]=(-1 / / 3)^{n} u[n]$ and the out is $y[n]=3(-1)^{n} u[n]+(1 / 3)^{n} u[n]$
- Solution: Find the z-transform of input and output. Use $X(z)$ and $Y(z)$ to find $H(z)$, then find $h(n)$ using the inverse z-transform

$$
\begin{gathered}
X(z)=\frac{1}{\left(1+\left(\frac{1}{3}\right) z^{-1}\right)}, \quad \text { with ROC }|z|>\frac{1}{3} \\
Y(z)=\frac{3}{\left(1+z^{-1}\right)}+\frac{1}{\left(1-\left(\frac{1}{3}\right) z^{-1}\right)}, \quad \text { with ROC }|z|>1
\end{gathered}
$$

- We can write $Y(z)$ as

$$
Y(z)=\frac{4}{\left(1+z^{-1}\right)\left(1-\left(\frac{1}{3}\right) z^{-1}\right)}, \quad \text { with ROC }|z|>1
$$

- We know $H(z)=Y(z) / X(z)$, so we get

$$
H(z)=\frac{4\left(1+\left(\frac{1}{3}\right) z^{-1}\right)}{\left(1+z^{-1}\right)\left(1-\left(\frac{1}{3}\right) z^{-1}\right)} \quad \text { with ROC }|z|>1
$$

- We need to find inverse z-transform to find $x[n]$, so use partial fraction and write $H(z)$ as

$$
H(z)=\frac{2}{1+z^{-1}}+\frac{2}{1-\left(\frac{1}{3}\right) z^{-1}} \quad \text { with ROC }|z|>1
$$

- Impulse response $x[n]$ is given by

$$
h[n]=2(-1)^{n} u[n]+2(1 / 3)^{n} u[n]
$$

Relation between transfer function and difference equation

- The transfer can be obtained directly from the difference-equation description of an LTI system
- We know that

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- We know that the transfer function $H(z)$ is an eigen value of the system associated with the eigen function z^{n}, ie. if $x[n]=z^{n}$ then the output of an LTI system $y[n]=z^{n} H(z)$
- Put $x[n-k]=z^{n-k}$ and $y[n-k]=z^{n-k} H(z)$ in the difference equation,
we get

$$
z^{n} \sum_{k=0}^{N} a_{k} z^{-k} H(z)=z^{n} \sum_{k=0}^{M} b_{k} z^{-k}
$$

- We can solve for $H(z)$

$$
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
$$

- The transfer function described by a difference equation is a ratio of polynomials in z^{-1} and is termed as a rational transfer function.
- The coefficient of z^{-k} in the numerator polynomial is the coefficient associated with $x[n-k]$ in the difference equation
- The coefficient of z^{-k} in the denominator polynomial is the coefficient associated with $y[n-k]$ in the difference equation
- This relation allows us to find the transfer function and also find the difference equation description for a system, given a rational function

Transfer function:

- The poles and zeros of a rational function offer much insight into LTI system characteristics
- The transfer function can be expressed in pole-zero form by factoring the numerator and denominator polynomial
- If c_{k} and d_{k} are zeros and poles of the system respectively and $\tilde{b}=$ b_{0} / a_{0} is the gain factor, then

$$
H(z)=\frac{\tilde{b} \prod_{k=1}^{M}\left(1-c_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)}
$$

- This form assumes there are no poles and zeros at $z=0$
- The $p^{\text {th }}$ order pole at $z=0$ occurs when $b_{0}=b_{1}=\ldots=b_{p-1}=0$
- The $l^{\text {th }}$ order zero at $z=0$ occurs when $a_{0}=a_{1}=\ldots=a_{l-1}=0$
- Then we can write $H(z)$ as

$$
H(z)=\frac{\tilde{b}^{-p} \prod_{k=1}^{M-p}\left(1-c_{k} z^{-1}\right)}{z^{-I} \prod_{k=1}^{N-I}\left(1-d_{k} z^{-1}\right)}
$$

where $\tilde{b}=b_{p} / a_{l}$

- In the example we had first order pole at $z=0$
- The poles, zeros and gain factor \tilde{b} uniquely determine the transfer function
- This is another description for input-output behavior of the system
- The poles are the roots of characteristic equation

8.2 Unilateral Z- transforms:

- Useful in case of causal signals and LTI systems
- The choice of time origin is arbitrary, so we may choose $n=0$ as the time at which the input is applied and then study the response for times $n \geq 0$

Advantages

- We do not need to use ROCs
- It allows the study of LTI systems described by the difference equation with initial conditions

Unilateral z-transform

- The unilateral z-transform of a signal $x[n]$ is defined as

$$
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

which depends only on $x[n]$ for $n \geq 0$

- The unilateral and bilateral z-transforms are equivalent for causal signals

$$
\begin{gathered}
\alpha^{n} u[n] \stackrel{z_{u}}{\longleftrightarrow} \frac{1}{1-\alpha z^{-1}} \\
a^{n} \cos \left(\Omega_{o} n\right) u[n] \stackrel{z_{u}}{\longleftrightarrow} \frac{1-a \cos \left(\Omega_{o}\right) z^{-1}}{1-2 a \cos \left(\Omega_{o}\right) z^{-1}+a^{2} z^{-2}}
\end{gathered}
$$

Properties of unilateral Z transform:

- Consider the difference equation description of an LTI system

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- We may write the z-transform as

$$
A(z) Y(z)+C(z)=B(z) X(z)
$$

where

$$
A(z)=\sum_{k=0}^{N} a_{k} z^{-k} \quad \text { and } \quad B(z)=\sum_{k=0}^{M} b_{k} z^{-k}
$$

- The same properties are satisfied by both unilateral and bilateral z transforms with one exception: the time shift property
- The time shift property for unilateral z-transform: Let $w[n]=x[n-1]$
- The unilateral z-transform of $w[n]$ is

$$
\begin{gathered}
W(z)=\sum_{n=0}^{\infty} W[n] z^{-n}=\sum_{n=0}^{\infty} x[n-1] z^{-n} \\
W(z)=x[-1]+\sum_{n=1}^{\infty} x[n-1] z^{-n} \\
W(z)=x[-1]+\sum_{m=0}^{\infty} x[m] z^{-(m+1)}
\end{gathered}
$$

- The unilateral z-transform of $w[n]$ is

$$
\begin{gathered}
W(z)=x[-1]+z^{-1} \sum_{m=0}^{\infty} x[m] z^{-m} \\
W(z)=x[-1]+z^{-1} X(z)
\end{gathered}
$$

- A one-unit time shift results in multiplication by z^{-1} and addition of the constant $x[-1]$
- In a similar way, the time-shift property for delays greater than unity is

$$
\begin{aligned}
x[n-k] \stackrel{z_{u}}{\longleftrightarrow} & x[-k]+x[-k+1] z^{-1}+ \\
& \ldots+x[-1] z^{-k+1}+z^{-k} X(z) \text { for } k>0
\end{aligned}
$$

- In the case of time advance, the time-shift property changes to

$$
\begin{aligned}
x[n+k] \stackrel{z_{u}}{\longleftrightarrow} & -x[0] z^{k}-x[-1] z^{k-1}+ \\
& \ldots-x[k-1] z+z^{k} X(z) \text { for } k>0
\end{aligned}
$$

8.3 Application to solve difference equations

Solving Differential equations using initial conditions:

- We get

$$
C(z)=\sum_{m=0}^{N-1} \sum_{k=m+1}^{N} a_{k} y[-k+m] z^{-m}
$$

- We have assumed that $x[n]$ is causal and

$$
x[n-k] \stackrel{z_{u}}{\longleftrightarrow} z^{-k} X(z)
$$

- The term $C(z)$ depends on the N initial conditions $y[-1], y[-2], \ldots, y[-N]$ and the a_{k}
- $C(z)$ is zero if all the initial conditions are zero
- Solving for $Y(z)$, gives

$$
Y(z)=\frac{B(z)}{A(z)} X(z)-\frac{C(z)}{A(z)}
$$

- The output is the sum of the forced response due to the input and the natural response induced by the initial conditions
- The forced response due to the input

$$
\frac{B(z)}{A(z)} X(z)
$$

- The natural response induced by the initial conditions

$$
\frac{C(z)}{A(z)}
$$

- $C(z)$ is the polynomial, the poles of the natural response are the roots of $A(z)$, which are also the poles of the transfer function
- The form of natural response depends only on the poles of the system, which are the roots of the characteristic equation

First order recursive system

- Consider the first order system described by a difference equation

$$
y[n]-\rho y[n-1]=x[n]
$$

where $\rho=1+r / 100$, and r is the interest rate per period in percent and $y[n]$ is the balance after the deposit or withdrawal of $x[n]$

- Assume bank account has an initial balance of \$10,000/- and earns 6% interest compounded monthly. Starting in the first month of the second year, the owner withdraws $\$ 100$ per month from the account at the beginning of each month. Determine the balance at the start of each month.
- Solution: Take unilateral z-transform and use time-shift property we get

$$
Y(z)-\rho\left(y[-1]+z^{-1} Y(z)\right)=X(z)
$$

- Rearrange the terms to find $Y(z)$, we get

$$
\begin{gathered}
\left(1-\rho z^{-1}\right) Y(z)=X(z)+\rho y[-1] \\
Y(z)=\frac{X(z)}{1-\rho z^{-1}}+\frac{\rho y[-1]}{1-\rho z^{-1}}
\end{gathered}
$$

- $Y(z)$ consists of two terms
- one that depends on the input: the forced response of the system
- another that depends on the initial conditions: the natural response of the system
- The initial balance of $\$ 10,000$ at the start of the first month is the initial condition $y[-1]$, and there is an offset of two between the time index n and the month index
- $y[n]$ represents the balance in the account at the start of the $n+2^{n d}$ month.
- We have $\rho=1+\frac{\frac{6}{12}}{100}=1.005$
- Since the owner withdraws $\$ 100$ per month at the start of month 13 ($n=11$)
- We may express the input to the system as $x[n]=-100 u[n-11]$, we get

$$
X(z)=\frac{-100 z^{-11}}{1-z^{-1}}
$$

- We get

$$
Y(z)=\frac{-100 z^{-11}}{\left(1-z^{-1}\right)\left(1-1.005 z^{-1}\right)}+\frac{1.005(10,000)}{1-1.005 z^{-1}}
$$

- After a partial fraction expansion we get

$$
Y(z)=\frac{20,000 z^{-11}}{1-z^{-1}}+\frac{20,000 z^{-11}}{1-1.005 z^{-1}}+\frac{10,050}{1-1.005 z^{-1}}
$$

- Monthly account balance is obtained by inverse z-transforming $Y(z)$ We get

$$
\begin{aligned}
y[n]=20,000 u[n-11] & -20,000(1.005)^{n-11} u[n-11] \\
& +10,050(1.005)^{n} u[n]
\end{aligned}
$$

- The last term $10,050(1.005)^{n} u[n]$ is the natural response with the initial balance
- The account balance
- The natural balance
- The forced response

Recommended Ouestions

1. Find the inverse Z transform of

$$
H(z)=\frac{1+Z^{-1}}{\left(1-0.9 e^{j \pi / 4} z^{-1}\right)\left(1-0.9 e^{-j \pi / 4} z^{-1}\right)}
$$

2. A system is described by the difference equation
$Y(n)-y n-1)+\frac{1}{4} y(n-2)=x(n)+1 / 4 x(n-1)-1 / 8 x(n-2)$
Find the Transfer function of the Inverse system
Does a stable and causal Inverse system exists
3. Sketch the magnitude response for the system having transfer functions.
4. Find the z -transform of the following $\mathrm{x}[\mathrm{n}]$:
(a) $x[n]=\left\{\frac{1}{2}, 1,-\frac{1}{3}\right\}$
(b) $x[n]=2 \delta[n+2]-3 \delta[n-2]$
(c) $x[n]=3\left(-\frac{1}{2}\right)^{n} u[n]-2(3)^{n} u[-n-1]$
(d) $x[n]=3\left(\frac{1}{7}\right)^{n} u[n]-2\left(\frac{1}{4}\right)^{n} u[-n-1]$
5. Given

$$
X(z)=\frac{z(z-4)}{(z-1)(z-2)(z-3)}
$$

(a) State all the possible regions of convergence.
(b) For which ROC is $\mathrm{X}(\mathrm{z})$ the z -transform of a causal sequence?
6. Show the following properties for the z -transform.
(a) If $x[n]$ is even, then $X\left(z^{-1}\right)=X(z)$.
(b) If $x[n]$ is odd, then $X\left(z^{-1}\right)=-X(z)$.
(c) If $x[n]$ is odd, then there is a zero in $X(z)$ at $z=1$.
7. Derive the following transform pairs:

$$
\begin{array}{ll}
\left(\cos \Omega_{0} n\right) u[n] \leftrightarrow \frac{z^{2}-\left(\cos \Omega_{0}\right) z}{z^{2}-\left(2 \cos \Omega_{0}\right) z+1} & |z|>1 \\
\left(\sin \Omega_{0} n\right) u[n] \leftrightarrow \frac{\left(\sin \Omega_{0}\right) z}{z^{2}-\left(2 \cos \Omega_{0}\right) z+1} & |z|>1
\end{array}
$$

8. Find the z -transforms of the following $\mathrm{x}[\mathrm{n}]$:
(a) $x[n]=(n-3) u[n-3]$
(b) $x[n]=(n-3) u[n]$
(c) $x[n]=u[n]-u[n-3]$
(d) $x[n]=n\{u[n]-u[n-3]\}$
9. Using the relation
$a^{n} u[n] \leftrightarrow \frac{z}{z-a} \quad|z|>|a|$
find the z -transform of the following $\mathrm{x}[\mathrm{n}]$:
(a) $x[n]=n a^{n-1} u[n]$
(b) $x[n]=n(n-1) a^{n-2} u[n]$
(c) $x[n]=n(n-1) \cdots(n-k+1) a^{n-k} u[n]$
10. Using the z-transform
(a) $x[n] * \delta[n]=x[n]$
(b) $x[n] * \delta\left[n-n_{0}\right]=x\left[n-n_{0}\right]$
11. Find the inverse z-transform of $X(z)=e^{a / z}, z>0$
12. Using the method of long division, find the inverse z-transform of the following $X(z)$:
(a) $X(z)=\frac{z}{(z-1)(z-2)},|z|<1$
(b) $X(z)=\frac{z}{(z-1)(z-2)}, 1<|z|<2$
(c) $X(z)=\frac{z}{(z-1)(z-2)},|z|>2$
13. Consider the system shown in Fig. 4-9. Find the system function $H(z)$ and its impulse response $\mathrm{h}[\mathrm{n}]$

Fig. 4-9
14. Consider a discrete-time LTI system whose system function $H(z)$ is given by $H(z)=\frac{z}{z-\frac{1}{2}} \quad|z|>\frac{1}{2}$
(a) Find the step response $\mathrm{s}[\mathrm{n}]$.
(b) Find the output $\mathrm{y}[\mathrm{n}]$ to the input $\mathrm{x}[\mathrm{n}]=\mathrm{nu}[\mathrm{n}]$.
15. Consider a causal discrete-time system whose output $\mathrm{y}[\mathrm{n}]$ and input $\mathrm{x}[\mathrm{n}]$ are related by $y[n]-\frac{5}{6} y[n-1]+\frac{1}{6} y[n-2]=x[n]$
(a) Find its system function $\mathrm{H}(\mathrm{z})$.
(b) Find its impulse response $\mathrm{h}[\mathrm{n}]$.

