In this section we cover the following:

- State graphs introduction
- Serial Adder
- Multiplier
- Divider

STATE GRAPHS FOR CONTROL NETWORKS

What are the conditions for having a proper state graph?

- If an arc is named \(X_iX_j/Z_pZ_q \) then
 - if given inputs \(X_iX_j \) are 1 (& other inputs would be don’t care),
 - then the specified outputs \(Z_pZ_q \) are 1 (& the other outputs are zero).
 - If we have 4 inputs \(X_1, X_2, X_3, X_4 \) and 4 outputs \(Z_1, Z_2, Z_3, Z_4 \) then the label \(X_1X_4'/Z_1Z_3 \) is equivalent to 1 - 0/1010. (- is don’t care)
 - If we label an arc \(I \), then the arc is traversed when \(I =1 \).

- To have a completely specified proper state graph in which the next state is uniquely defined for every input combination the following conditions must be satisfied:
 1. If \(X_i \) and \(X_j \) are any pair of input labels on arcs exiting state \(S_k \), then
 \(X_iX_j = 0 \) if \(i \neq j \).
 This condition ensures that at most one condition is satisfied at any given point of time.
 2. If \(n \) arcs exit state \(S_k \) and the \(n \) arcs have input labels \(X_1, X_2, \ldots, X_n \) then
 \(X_1 + X_2 + \ldots + X_n = 1 \). This ensures that at least one condition is satisfied.
A few examples illustrating the nomenclature in state graphs is presented in figures below.

\[
\begin{align*}
(X_1) (X_1'X_2') &= 0 \\
(X_1) (X_1'X_2) &= 0 \\
(X_1'X_2') (X_1'X_2) &= 0 \\
X_1 + X_1'X_2' + X_1'X_2 &= 1
\end{align*}
\]

Fig. Partial state graph showing that conditions 1 & 2 are satisfied for state Sk.

\[
\begin{array}{cccccccc}
\text{S}_k & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
\text{S}_k & \text{S}_k & \text{S}_q & \text{S}_q & \text{S}_p & \text{S}_p & _ & _ & \\
\end{array}
\]

Fig. Partial State Graph (Fig. a above) and its state table row for Sk.
Serial adder with Accumulator

Question: Illustrate the design of a control circuit for a serial adder with Accumulator

Definition: A Control circuit in a digital system is a sequential network that outputs a sequence of control signals. These Control signals cause operations such as addition and shifting to take place at appropriate times.

Block Diagram of a 4-bit Serial Adder with Accumulator

The Operation of Serial Adder whose block diagram is given above is illustrated with the help of a table shown below.
<table>
<thead>
<tr>
<th>(t_0)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(c_i)</th>
<th>(\text{sum}_i)</th>
<th>(c_{i+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(010)</td>
<td>(011)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>(t_1)</td>
<td>(0010)</td>
<td>(1011)</td>
<td>(1)</td>
<td>(0)</td>
<td>(1)</td>
</tr>
<tr>
<td>(t_2)</td>
<td>(0001)</td>
<td>(1101)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(t_3)</td>
<td>(1000)</td>
<td>(1110)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0)</td>
</tr>
<tr>
<td>(t_4)</td>
<td>(1100)</td>
<td>(0111)</td>
<td>(0)</td>
<td>(1)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

State Graph for Control Circuit of the Serial Adder

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State (N=0)</th>
<th>Next State (N=1)</th>
<th>Present Output (Sh) (N=0)</th>
<th>Present Output (Sh) (N=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_0)</td>
<td>(S_0)</td>
<td>(S_1)</td>
<td>(0)</td>
<td>(1)</td>
</tr>
<tr>
<td>(S_1)</td>
<td>(S_2)</td>
<td>(S_2)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(S_2)</td>
<td>(S_3)</td>
<td>(S_3)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(S_3)</td>
<td>(S_0)</td>
<td>(S_0)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
Question: Draw the block diagram for a 16 bit serial adder with accumulator.

- The control network uses a 4 bit counter which outputs k=1 when it is in state 1111.
- When a start signal N is received, the registers should be loaded. Assume that N will remain 1 until the addition is complete.
- When the addition is complete, the control network should go to a stop and remain there until N is changed to 0.
- Draw a state diagram for the control network (excluding counter). Write the VHDL code.

![State Diagram for the Control Network](www.getmyuni.com)

Fig. state diagram for the control network
VHDL CODE for the 16 bit serial adder

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

--library UNISIM;
--use UNISIM.VComponents.all;
Entity seradder is
Port  (N,clk: in STD_LOGIC;
A: in STD_LOGIC_vector(15 downto 0);
R: out STD_LOGIC_vector(15 downto 0);
B: in STD_LOGIC_vector(15 downto 0);
Co: out STD_LOGIC);
End seradder;
Architecture mealy of seradder is
Signal  si,ci,cip,ld,sh: STD_LOGIC:='0';
Signal k:STD_LOGIC:='0';
Signal acc,regb: STD_LOGIC_vector(15 downto 0);
Signal state: integer range 0 to 2:=0;
Signal nxst: integer range 0 to 2:=0;
Signal cnt: STD_LOGIC_vector(4 downto 0):="00000";
Begin
K<='1' when (cnt="10000") else '0';
Process(clk)
Begin
```

(Fig. Block diagram for a 16 bit serial adder with accumulator)
If (clk='1' and clk' event) then
Case state is
 when 0=> if (N='1') then ld<='1';sh<='1';acc<=A;
 regb<=B;ci<='0'; state <=state+1;
 Else state<=0; end if;
 when 1 => if(k='1') then sh<='1'; state=<
 state+1;R<= acc; Co<=cip;
 else sh<='1';
 acc<=si & acc(15 downto 1);
 regb<= regb(0) & regb(15 downto 1);
 Ci<=cip; cnt<=cnt+1; end if;
 when 2=> if(N='0') then state <=0;
 Else nxst<=state; end if;
End case;
End if; End process;
Si<= acc(0) xor regb(0) xor ci;
Cip<=(acc(0) and regb(0)) or (acc(0) and ci) or
 (regb(0) and ci);
End mealy;
Binary Multiplier

Example 13(10) X 5(10):

Multiplicand → 1 1 0 1 (13)
Multiplier → 0 1 0 1 (05)
Partial Product → 1 1 0 1

<table>
<thead>
<tr>
<th>0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 0 1</td>
</tr>
<tr>
<td>1 1 0 1</td>
</tr>
<tr>
<td>1 0 0 0 0 0 1</td>
</tr>
<tr>
<td>0 0 0 0</td>
</tr>
<tr>
<td>0 1 0 0 0 0 0 1 (65)</td>
</tr>
</tbody>
</table>

Multiplication of Two 4 bit numbers requires the following architecture

- 4-bit multiplicand register
- 4-bit multiplier register
- 4-bit full adder
- 8-bit product register which serves as an accumulator to accumulate the sum of partial products.

Note: In the conventional adder Shifting multiplicand left every time would require an 8-bit Adder. Instead we shift the contents of the product register right each time.

The operation of the 4-bit binary multiplier shown in figure is elaborated in the below steps.

- 4-bits from accumulator and 4-bits from multiplicand register are inputs to adder.
- 4 sum bits and carry are connected back to accumulator.
- When an Ad signal occurs, adder outputs are transferred to ACC at next clk.
- Extra bit carries temporarily any carry that is generated.
- Sh signal causes all 9 bits to be shifted right at next clk.
- Multiplier is stored in lower 4 bits of ACC.
- Control circuit outputs proper sequence of add and shift signals after the start signal St=1.
Fig. Block Diagram of Binary Multiplier

Multiplication Steps

Initial contents of product register \(0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \) \(\leftarrow M \) (5)

(add multiplicand since \(M = 1 \)) \(\begin{array}{c} 1 \ 1 \ 0 \ 1 \end{array} \) \(\leftarrow \) Mcand(13)

after addition \(\begin{array}{c} 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \end{array} \)

after shift \(\begin{array}{c} 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \end{array} \) \(\leftarrow M \)

(skip addition since \(M = 0 \)) \(\begin{array}{c} 0 \ 0 \ 0 \ 0 \end{array} \)

after addition \(\begin{array}{c} 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \end{array} \)

after shift \(\begin{array}{c} 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \end{array} \) \(\leftarrow M \)

(add multiplicand since \(M = 1 \)) \(\begin{array}{c} 1 \ 1 \ 0 \ 1 \end{array} \)

after addition \(\begin{array}{c} 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \end{array} \)

after shift \(\begin{array}{c} 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \end{array} \)

(skip addition since \(M = 0 \))

after shift (final answer) \(\begin{array}{c} 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \end{array} \) (65)
Algorithm:

1. If current multiplier bit \(M \) (LSB of acc) is 1, multiplicand is added to accumulator and shifted right.
2. If \(M = 0 \), addition is skipped and contents shifted right.

The below figure briefly illustrates the contents of the binary multiplier for the example illustrated above.
Question: What should the control circuit of the multiplier do??

- Output proper sequence of Ad and Sh signals.
- Start when S=1.
- Load; Ld=1.
- Check if M=1. If yes then make Ad=1 (to add). Then make Sh=1.
- If M =0, then don’t change Ad to 1. Just make Sh=1.
- A shift is always generated after Add operation.
- A done signal generated after 4 shifts (indicating multiplication is complete).

State Graph for Binary Multiplier Control
VHDL code for 4 X 4 Binary Multiplier

The below code is a behavioral model of a multiplier for unsigned binary numbers. It multiplies a 4-bit multiplicand by a 4-bit multiplier to give an 8-bit product. The maximum number of clock cycles needed for a multiply is 10.

```vhdl
library BITLIB;
use BITLIB.bit_pack.all;

entity mult4X4 is
  port (Clk, St: in bit;
        Mplier, Mcand : in bit_vector(3 downto 0);
        Done: out bit);
end mult4X4;

architecture behave1 of mult4X4 is
  signal State: integer range 0 to 9;
  signal ACC: bit_vector(8 downto 0); --accumulator
  alias M: bit is ACC(0);   --M is bit 0 of ACC

begin
  process
    begin
      wait until Clk = '1'; --executes on rising edge of clock
      case State is
        when 0 => --initial State
          if St='1' then
            ACC(8 downto 4) <= "00000"; --Begin cycle
            ACC(3 downto 0) <= Mplier; --load the multiplier
            State <= 1;
          end if;
        when 1 | 3 | 5 | 7 => --add/shift" State
          if M = '1' then --Add multiplicand
            ACC(8 downto 4) <= add4(ACC(7 downto 4), Mcand, '0');
            State <= State+1;
          else
            ACC <= '0' & ACC(8 downto 1); --Shift accumulator right
            State <= State + 2;
          end if;
        when 2 | 4 | 6 | 8 => --"shift" State
          ACC <= '0' & ACC(8 downto 1); --Right shift
          State <= State + 1;
        when 9 => State <= 0;
      end case;
    end process;
end mult4X4;
```
Done <= '1' when State = 9 else '0'; --End of cycle
end behave1;

Multiplier Control with Counter

(a) Multiplier control using Counter

(b) Partial State-graph for add-shift control

(c) Final state graph for add - shift control (using counter output K)
Operation of Multiplier using a Counter

<table>
<thead>
<tr>
<th>Time</th>
<th>State</th>
<th>Counter</th>
<th>Product</th>
<th>St</th>
<th>M</th>
<th>K</th>
<th>Load</th>
<th>Ad</th>
<th>Sh</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>S0</td>
<td>00</td>
<td>000000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t1</td>
<td>S0</td>
<td>00</td>
<td>000000000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t2</td>
<td>S1</td>
<td>00</td>
<td>000001011</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t3</td>
<td>S2</td>
<td>00</td>
<td>011011011</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t4</td>
<td>S1</td>
<td>01</td>
<td>001101101</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t5</td>
<td>S2</td>
<td>01</td>
<td>100111101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>t6</td>
<td>S1</td>
<td>10</td>
<td>010011110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t7</td>
<td>S1</td>
<td>11</td>
<td>001001111</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t8</td>
<td>S2</td>
<td>11</td>
<td>100011111</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>t9</td>
<td>S3</td>
<td>00</td>
<td>010001111</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

VHDL code for the binary Multiplier (Control circuit with Counter)

```vhdl
architecture behave2 of mult4X4 is
signal ACC: bit_vector(8 downto 0); --accumulator
alias M: bit is ACC(0); --M is bit 0 of ACC
signal cnt: bit_vector(2 downto 0);

begin
    process (st)
    begin
        if St='1' then
            cnt<= "000";
            ACC(8 downto 4) <= "0000"; --Begin cycle
            ACC(3 downto 0) <= Mplier; --load the multiplier
        end if;
    end process;

    process (clk)
    begin
        while (cnt < "100") loop
            if (clk='1' and clk'event) then
                if (M = '1') then --Add multiplicand
                    ACC(8 downto 4) <= add4(ACC(7 downto 4),Mcand,'0');
                end if;
                ACC <= '0' & ACC(8 downto 1); --Shift accumulator right
                cnt<=cnt+'1';
            end if;
        end loop;
    end process;
end
```
end loop; end process;
 Done <= '1' when cnt="100"; else "0";
end behave2;

4-bit Multiplier Partial Products

<table>
<thead>
<tr>
<th>Multiplicand</th>
<th>Multiplier</th>
<th>Partial product 0</th>
<th>Partial Product 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_2</td>
<td>X_2</td>
<td>X_1</td>
<td>X_0</td>
</tr>
<tr>
<td>X_3</td>
<td>X_2</td>
<td>X_1</td>
<td>X_0</td>
</tr>
<tr>
<td>X_2Y_0</td>
<td>X_2Y_0</td>
<td>X_1Y_0</td>
<td>X_0Y_0</td>
</tr>
<tr>
<td>X_3Y_1</td>
<td>X_2Y_1</td>
<td>X_1Y_1</td>
<td>X_0Y_1</td>
</tr>
</tbody>
</table>

| S_13 | S_12 | S_11 | S_10
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C_13</td>
<td>C_12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>
| S_23 | S_22 | S_21 | S_20
<table>
<thead>
<tr>
<th>C_23</th>
<th>C_22</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| S_33 | S_32 | S_31 | S_30
| C_33 | C_32 | | |

<table>
<thead>
<tr>
<th>P_7</th>
<th>P_6</th>
<th>P_5</th>
<th>P_4</th>
<th>P_3</th>
<th>P_2</th>
<th>P_1</th>
<th>P_0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final Product</td>
</tr>
</tbody>
</table>

Block diagram of 4X4 Array Multiplier
Operation
- n bit x n bit multiplication would require n² AND gates, n(n-2) full adders and n half-adders.
- Number of components increases quadilaterally.
- Longest path goes through 2n adders and the worst case multiply time is 2ntad+tg where tad delay through an adder and tg is the longest AND gate delay.
- The serial-parallel multiplier requires 2n clocks to complete the multiplication under worst case. The minimum clock period is determined by the propagation delay through the n-bit adder as well as the propagation delay and setup time for accumulator flip flops.

Signed binary numbers - Multiplication
- Complement multiplier if negative.
- Complement multiplicand if negative.
- Multiply the two positive binary numbers.
- Complement the product if negative.

Any other way??

Multiplication of Signed Binary Numbers
- complement the multiplicand
- Complementation of the multiplier or product is not necessary
- 2’s complement of the negative numbers
- Examples: 0.101 +5/8 1.011 -5/8

When multiplying signed binary numbers, we must consider four cases:

<table>
<thead>
<tr>
<th>Multiplicand</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>
Binary Multiplication

Example 1 (Positive Number X Positive Number):

\[
\begin{array}{c}
0.1 \ 1 \ 1 \ (+7/8) \leftarrow \text{Multiplicand} \\
X 0.1 \ 0 \ 1 \ (+5/8) \leftarrow \text{Multiplier}
\end{array}
\]

(0. \ 0 \ 0) \ 0 \ 1 \ 1 \ 1 \ (+7/64) \\
(0.) \ 0 \ 1 \ 1 \ (+7/16) \\
0. \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ (+35/64)

Note: The proper representation of the fractional partial products requires extension of the sign bit past the binary point, as indicated in parentheses. (such extension is not necessary in the hardware.)

Example 2 (negative Number X Positive Number):

\[
\begin{array}{c}
1.1 \ 0 \ 1 \ (-3/8) \\
X 0.1 \ 0 \ 1
\end{array}
\]

(1. \ 1 \ 1) \ 1 \ 1 \ 0 \ 1 \ (-3/64) \\
(1. \ 1 \ 0 \ 1 \ (-3/16) \\
\hline
1. \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ (-15/64)

Note: The extension of the sign bit provides proper representation of the negative products.

Example 3 (Positive Number X negative Number):

\[
\begin{array}{c}
0.1 \ 0 \ 1 \ (+5/8) \\
X 1.1 \ 0 \ 1 \ (-3/8)
\end{array}
\]

(0. \ 0 \ 0) \ 0 \ 1 \ 0 \ 1 \ (+5/64) \\
(0.) \ 0 \ 1 \ 0 \ 1 \ (+5/16) \\
(0.) \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ (+5/16) \\
1. \ 0 \ 1 \ 1 \ (-5/8) \leftarrow \text{Note: The 2’s complement of the multiplicand is added at this point} \\
1. \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ (-15/64)

Example 4 (negative Number X negative Number):

\[
\begin{array}{c}
1.1 \ 0 \ 1 \ (-3/8) \\
X 1.1 \ 0 \ 1 \ (-3/8)
\end{array}
\]

(1. \ 1 \ 1) \ 1 \ 1 \ 0 \ 1 \\
(1.) \ 1 \ 1 \ 0 \ 1 \\
(1.) \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \\
0. \ 0 \ 1 \ 1 \ (+3/8) \\
0. \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ (+9/64)

Preserve sign bit while extension and add the 2’s complement of the multiplicand.
Procedure

The procedure for multiplying signed 2’s complement binary fractions:

- Preserve the sign of the partial product at each step
- If the sign of the multiplier is negative, complement the multiplicand before adding it in at the last step.
- The hardware is almost identical to that used for multiplication of positive numbers, except a completer must be added for the multiplicand.

Block diagram for 2’s Complement Multiplier

![Block diagram for 2’s Complement Multiplier](image)

Operation

- 5-bit adder is used so that sign bit is not lost due to a carry into sign bit position.
- M is current active bit of the multiplier.
- Sh causes accumulator to shift right by one bit with sign extension.
- Ad causes adder output to be loaded into accumulator. Carry bit is discarded since we are doing 2’s complement addition.
- Cm causes multiplicand to be complemented before it is given to adder input. It is also connected as carry input to adder. So that Cm=1, it gives us two’s complement.
State Graph for 2’s Complement Multiplier
Block diagram for Faster Multiplier

State Graph for Faster Multiplier
VHDL Code --Behavioral Model for 2’s Complement Multiplier

library BITLIB;
use BITLIB.bit_pack.all;

entity mult2C is
 port (CLK, St: in bit;
 Mplier,Mcand : in bit_vector(3 downto 0);
 Product: out bit_vector (6 downto 0);
 Done: out bit);
end mult2C;

architecture behave1 of mult2C is
 signal State : integer range 0 to 5;
 signal A, B: bit_vector(3 downto 0);
 alias M: bit is B(0);
 begin
 process
 variable addout: bit_vector(4 downto 0);
 begin
 wait until CLK = '1';
 case State is
 when 0=> --initial State
 if St='1' then
 A <= "0000"; --Begin cycle
 B <= Mplier; --load the multiplier
 State <= 1;
 end if;
 when 1 | 2 | 3 => --"add/shift" State
 if M = '1' then
 addout := add4(A,Mcand,'0'); --Add multiplicand to A and shift
 A <= Mcand(3) & addout(3 downto 1);
 B <= addout(0) & B(3 downto 1);
 else
 A <= A(3) & A(3 downto 1); --Arithmetic right shift
 B <= A(0) & B(3 downto 1);
 end if;
 State <= State + 1;
 when 4 => --add complement if sign bit
 if M = '1' then
 addout := add4(A, not Mcand,'1'); --Of multiplier is 1
 A <= not Mcand(3) & addout(3 downto 1);
 B <= addout(0) & B(3 downto 1);
 else
 A <= A(3) & A(3 downto 1); --Arithmetic right shift
 B <= A(0) & B(3 downto 1);
 end if;
 end case;
 end process;
 end mult2C;
end if;
State <= 5;
wait for 0 ns;
Done <= '1';
Product <= A(2 downto 0) & B; --output product
when 5 =>
State <= 0;
Done <= '0';
end case;
end process;
end behave1;

Test Bench for Signed Multiplier

To test the multiplier, need to test the

- 4 standard cases(++, +-,-+,--)
- Special & limiting cases – including 0, largest positive fraction, most
 negative fraction, all 1’s.

The test bench program below supplies a sequence of values for the multiplicand,
multiplier, the clock and start signal.

VHDL Program -- Test Bench for Signed Multiplier

library BITLIB;
use BITLIB.bit_pack.all;

entity testmult is
end testmult;

architecture test1 of testmult is
component mult2C
port(CLK, St: in bit;
Mplier,Mcand : in bit_vector(3 downto 0);
Product: out bit_vector (6 downto 0);
Done: out bit);
end component;

constant N: integer := 11;
type arr is array(1 to N) of bit_vector(3 downto 0);
constant Mcandarr: arr := ('0111', '1101', '0101', '1101', '0111', '1000',
 '0111', '1000', '0000', '1111', '1011');
constant Mplierarr: arr := ('0101', '0101', '1101', '1101', '0111', '1111',
 '1000', '1000', '1101', '1111', '0000');
signal CLK, St, Done: bit;
signal Mplier, Mcand: bit_vector(3 downto 0);
signal Product: bit_vector(6 downto 0);
begin
 CLK <= not CLK after 10 ns;
 process
 begin
 for i in 1 to N loop
 Mcand <= Mcandarr(i);
 Mplier <= Mplierarr(i);
 St <= '1';
 wait until rising_edge(CLK);
 St <= '0';
 wait until falling_edge(Done);
 end loop;
 end process;
 mult1: mult2c port map(Clk, St, Mplier, Mcand, Product, Done);
end test1;

VHDL Model for 2's complement Multiplier with Control Signals (uses a separate process
for the combinational logic and does all of the register updates in another process)

library BITLIB;
use BITLIB.bit_pack.all;

entity mult2Cs is
 port (CLK, St: in bit;
 Mplier, Mcand: in bit_vector(3 downto 0);
 Product: out bit_vector (6 downto 0);
 Done: out bit);
end mult2Cs;

-- This architecture of a 4-bit multiplier for 2's complement numbers uses control signals.

architecture behave2 of mult2Cs is
 signal State, Nextstate: integer range 0 to 5;
signal A, B: bit_vector(3 downto 0);
signal AdSh, Sh, Load, Cm: bit;
signal addout: bit_vector(4 downto 0);
alias M: bit is B(0);
begin
process (state, st, M)
begin
Load <= '0'; AdSh <= '0'; Sh <= '0'; Cm <= '0'; Done <= '0';
case State is
when 0=> --initial State
if St='1' then Load <= '1'; Nextstate <= 1; end if;
when 1 | 2 | 3 => --"add/shift" State
if M = '1' then AdSh <= '1';
else Sh <= '1';
end if;
Nextstate <= State + 1;
when 4 => --add complement if sign
if M = '1' then --bit of multiplier is 1
Cm <= '1'; AdSh <= '1';
else Sh <= '1';
end if;
nextstate <= 5;
when 5 => --output product
done <= '1';
nextstate <= 0;
end case;
end process;

addout <= add4(A, Mcand, '0') when Cm = '0'
else add4(A, not Mcand, '1');

process
begin
wait until CLK = '1'; --executes on rising edge
if Load = '1' then --load the multiplier
A <= "0000";
B <= Mplier;
end if;
if AdSh = '1' then --Add multiplicand to A and shift
A <= (Mcand(3) xor Cm) & addout(3 downto 1);
B <= addout(0) & B(3 downto 1);
end if;
if Sh = '1' then
A <= A(3) & A(3 downto 1);
B <= A(0) & B(3 downto 1);
end if;
State <= Nextstate;
end process;

Product <= A(2 downto 0) & B;
end behave2;
Design of the control circuit in a Multiplier using a counter (74163)

Fig below shows the control circuit using a counter.

Realization of Multiplier Control Network

The counter output Q3Q2Q1Q0 represents the 6 states of the counter with the state assignment S0 -> 0000, S1 -> 0100, S2 -> 0101, S3 -> 0110, S4 -> 0111, S5 -> 1000

Counter is cleared in S5, loaded with Din = 0100 in S0 & incremented in remaining states.

The design is given below:

\[
\begin{align*}
CLRI &= Q_3', \quad \text{Done} = Q_3 \\
Load &= Q_3Q_2St \\
Ld1 &= \text{Load}' \\
P1 &= Q_2 \\
Sh &= M'Q_2 \\
AdSh &= MQ_2 \\
Cm &= MQ_1Q_0
\end{align*}
\]

VHDL model of a 4-bit multiplier for 2’s complement numbers

WHICH implements the controller using a counter and logic equations.

```vhdl
library BITLIB;
use BITLIB.bit_pack.all;

entity mult2CEQ is
  port(CLK, St: in bit;
       Mplier, Mcand: in bit_vector(3 downto 0);
```
Product: out bit_vector(6 downto 0));
end mult2CEQ;

architecture m2ceq of mult2CEQ is
 signal A, B, Q, Comp: bit_vector(3 downto 0);
 signal addout: bit_vector(4 downto 0);
 signal AdSh, Sh, Load, Cm, Done, Ld1, CLR1, P1: bit;
 Signal One: bit:='1';
 Signal Din: bit_vector(3 downto 0) := "0100";
 alias M: bit is B(0);
begin
 Count1: C74163 port map (Ld1, CLR1, P1, One, CLK, Din, open, Q);
 P1 <= Q(2);
 CLR1 <= not Q(3);
 Done <= Q(3);
 Sh <= not M and Q(2);
 AdSh <= M and Q(2);
 Cm <= Q(1) and Q(0) and M;
 Load <= not Q(3) and not Q(2) and St;
 Ld1 <= not Load;
 Comp <= Mcand xor (Cm & Cm & Cm & Cm); --complement Mcand if
 Cm='1'
 addout <= add4(A,Comp,Cm); --add completer output to A
 process
 begin
 wait until CLK = '1'; --executes on rising edge
 if Load = '1' then --load the multiplier
 A <= "0000";
 B <= Mplier;
 end if;
 if AdSh = '1' then --Add multiplicand to A and shift
 A <= (Mcand(3) xor Cm) & addout(3 downto 1);
 B <= addout(0) & B(3 downto 1);
 end if;
 if Sh = '1' then --Right shift with sign extend
 A <= A(3) & A(3 downto 1);
 B <= A(0) & B(3 downto 1);
 end if;
 if Done = '1' then
 Product <= A(2 downto 0) & B;
 end if;
 end process;
end m2ceq;
Binary Divider

Procedure:

\[
\text{divisor} \quad 1101 \underbrace{10000111}_{\text{quotient}} \quad \text{dividend}
\]

\[
(135 \div 13 = 10 \text{ with a remainder of 5})
\]

Block Diagram for Parallel Binary Divider

Sequence of functions:

\[\checkmark\] A shift signal (Sh) will shift the dividend one place to the left.

\[\checkmark\] A subtract signal (Su) will subtract the divisor from the 5 leftmost bits in the dividend register and set the quotient bit (the rightmost bit in the dividend register) to 1.
If the divisor is greater than the 4 leftmost dividend bits, the comparator output is C=0; otherwise, C=1.

The control circuit generates the required sequence of shift and subtract signals. Whenever C=0, subtraction cannot occur, so a shift signal is generated and quotient bit is set to 0.

Whenever C=1, a subtraction signal is generated, and the quotient bit is set to 1.

Example (135 / 13):

```
1 0 0 0 0 1 1 1 0
1 1 0 1

0 0 0 1 1 1 1 1 1 0 ➞ First quotient digit

0 0 1 1 1 1 1 1 0 ➞ No subtraction only shift
1 1 0 1

0 1 1 1 1 1 1 0 0
1 1 0 1

0 0 0 1 0 1 1 0 1 ➞ Third quotient digit

0 0 1 0 1 1 0 1
remainder

1 0 1 0
quotient
```
Overflow

• As a result of a division operation, if the quotient contains more bits than are available for storing the quotient, we say that an overflow has occurred.
• It is not necessary to carry out the division if an overflow condition exists.
• An initial comparison of the dividend and divisor determine whether the quotient will be too large or not.

Detection of Overflow

\[
\frac{X_8X_7X_6X_5X_4X_3X_2X_1X_0}{Y_3Y_2Y_1Y_0} \geq \frac{X_8X_7X_6X_5X_40000}{Y_3Y_2Y_1Y_0} = \frac{X_8X_7X_6X_5X_4 \times 16}{Y_3Y_2Y_1Y_0} \geq 16
\]

State Diagram for Divider Control Circuit

Operation of the Divider

• When a start signal (St) occurs, the 8-bit dividend and 4-bit divisor are loaded into the appropriate registers.
• If C is 1, the quotient would require five or more bits. Since space is only provided for 4-bit quotient, this condition constitutes an overflow, so the divider is stopped and the overflow indicator is set by the V output.
• Normally, the initial value of C is 0, so a shift will occur first, and the control circuit will go to state S2.
• Then, if \(C=1 \), subtraction occurs. After the subtraction is completed, \(C \) will always be 0, so the next clock pulse will produce a shift.
• This process continues until four shifts have occurred and the control is in state \(S5 \).
• Then a final subtraction occurs if necessary, and the control returns to the stop state. For this example, we will assume that when the start signal \((St) \) occurs, it will be 1 for one clock time, and then it will remain 0 until the control network is back in state \(S0 \). Therefore, \(St \) will always be 0 in states \(S1 \) through \(S5 \).

State Table for Divider Control Circuit

<table>
<thead>
<tr>
<th>State</th>
<th>(StC)</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S0)</td>
<td>(S0)</td>
<td>(S0)</td>
<td>(S1)</td>
<td>(S1)</td>
<td>00</td>
<td>01</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(S1)</td>
<td>(S2)</td>
<td>(S0)</td>
<td>(--)</td>
<td>(--)</td>
<td>(Sh)</td>
<td>(V)</td>
<td>(--)</td>
<td>(--)</td>
<td></td>
</tr>
<tr>
<td>(S2)</td>
<td>(S3)</td>
<td>(S2)</td>
<td>(--)</td>
<td>(--)</td>
<td>(Sh)</td>
<td>(Su)</td>
<td>(--)</td>
<td>(--)</td>
<td></td>
</tr>
<tr>
<td>(S3)</td>
<td>(S4)</td>
<td>(S3)</td>
<td>(--)</td>
<td>(--)</td>
<td>(Sh)</td>
<td>(Su)</td>
<td>(--)</td>
<td>(--)</td>
<td></td>
</tr>
<tr>
<td>(S4)</td>
<td>(S5)</td>
<td>(S4)</td>
<td>(--)</td>
<td>(--)</td>
<td>(Sh)</td>
<td>(Su)</td>
<td>(--)</td>
<td>(--)</td>
<td></td>
</tr>
<tr>
<td>(S5)</td>
<td>(S0)</td>
<td>(S0)</td>
<td>(--)</td>
<td>(--)</td>
<td>0</td>
<td>(Su)</td>
<td>(--)</td>
<td>(--)</td>
<td></td>
</tr>
</tbody>
</table>
Question 4.5 (a) Draw the block diagram for divider for unsigned binary number that divides an 8 bit dividend by a 3 bit divisor to give a 5 bit quotient

(b) Draw state graph for the control circuit, assume that the start signal (st) is present for 1 clock period.

(c) Write VHDL description of the divider.

(a) Block diagram for divider for unsigned binary number

(b) Refer State Diagram for Divider Control Circuit

(c) VHDL description of the divider:

```
library ieee;
use ieee.std_logic_1164.all;
entity divider is
port (St, Clk: in std_logic;
dend: in std_logic_vector(7 downto 0);
dsor: in std_logic_vector(2 downto 0);
v: out std_logic;
quent: out std_logic_vector(4 downto 0));
end divider;
architecture beh of divider is
signal C, Sh, su, Ld: std_logic;
signal DendR: std_logic_vector(8 downto 0);
signal DsorR: std_logic_vector(2 downto 0);
```
signal Sub: std_logic_vector(4 downto 0);
signal State, nxState: integer range 0 to 6;
begin
 Sub <= Add4 (DendR(8 downto 5), not('0' & DsorR), '1');
 C<=sub(4);
 Qent<=DendR(4 downto 0);
 Process (state, st, C)
 Begin
 V<= '0'; Sh<= '0'; Su<='0'; Ld<='0';
 Case state is
 When 0=> if (St='1') then Ld<='1'; nxState<='1';
 Else nxstate<='0'; end if;
 When 1=> if(C='1') then V<='1'; nxstate<='0';
 Else Sh<='1'; nxState<=2; end if;
 When 2|3|4|5 => if (C='1') then Su<='1'; nxstate<=State;
 Else Sh<='1'; nxstate<=state + 1; end if;
 When 6 => if (C='1') then Su<='1'; end if;
 nxState<='0';
 end case;
 end process;
 process (Clk)
 begin
 if (Clk='1' and Clk'event) then
 state<=nxState;
 if (Ld='1') then
 DendR<='0' & dend;
 DsorR<=dsor; end if;
 If (Sh='1') then
 DendR<= DendR (7 downto 0) & '0'; end if;
 If (Su='1') then
 DendR(8 downto 5) <=sub(3 downto 0);
 DendR(0)<='1'; end if;
 End if;
 End process;
End divider;
Block diagram for Signed Divider

Signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LdU</td>
<td>Load upper half of dividend from bus.</td>
</tr>
<tr>
<td>LdL</td>
<td>Load lower half of dividend from bus.</td>
</tr>
<tr>
<td>Lds</td>
<td>Load sign of dividend into sign flip-flop.</td>
</tr>
<tr>
<td>S</td>
<td>Sign of dividend.</td>
</tr>
<tr>
<td>Cm1</td>
<td>Complement dividend register (2’s complement)</td>
</tr>
<tr>
<td>Ldd</td>
<td>Load divisor from bus</td>
</tr>
<tr>
<td>Su</td>
<td>Enable adder output onto bus (Ena) and load upper half of dividend from bus.</td>
</tr>
<tr>
<td>Cm2</td>
<td>Enable complementer. (Cm2 equals the complement of the sign bit of the divisor, so a positive divisor is complemented and a negative divisor is not.)</td>
</tr>
<tr>
<td>Sh</td>
<td>Shift the dividend register left one place and increment the counter</td>
</tr>
</tbody>
</table>

www.getmyuni.com
C Carry output from adder. (If C=1, the divisor can be subtracted from the upper dividend.)
St Start.
V Overflow.
Qneg Quotient will be negative. (Qneg = 1 when the sign of the dividend and divisor are different.)

Procedure

☞ Load the upper half of the dividend from the bus, and copy the sign of the dividend into the sign flip-flop.
☞ Load the lower half of the dividend from the bus.
☞ Load the divisor from the bus.
☞ Complement the dividend if it is negative.
☞ If an overflow condition is present, go to the done state.
☞ Else carry out the division by a series of shifts and subtractions.
☞ When division is complete, complement the quotient if necessary, and go to the done state.

State Graph for Signed Divider Control Network
VHDL Model of 32-bit Signed Divider

library BITLIB;
use BITLIB.bit_pack.all;

entity sdiv is
 port(Clk,St: in bit;
 Dbus: in bit_vector(15 downto 0);
 Quotient: out bit_vector(15 downto 0);
 V, Rdy: out bit);
end sdiv;

architecture Signdiv of Sdiv is
constant zero_vector: bit_vector(31 downto 0):=(others=>'0');
signal State: integer range 0 to 6;
signal Count : integer range 0 to 15;
signal Sign,C,NC: bit;
signal Divisor,Sum,Compout: bit_vector(15 downto 0);
signal Dividend: bit_vector(31 downto 0);
alias Q: bit_vector(15 downto 0) is Dividend(15 downto 0);
alias Acc: bit_vector(15 downto 0) is Dividend(31 downto 16);
beginn
 -- concurrent statements
 compout <= divisor when divisor(15) = '1'
 else not divisor;
 Addvec(Acc,compout,not divisor(15),Sum,C,16); -- 16-bit adder
 Quotient <= Q;
 Rdy <= '1' when State=0 else '0';
begin
 wait until Clk = '1'; -- wait for rising edge of clock
 case State is
 when 0=>
 if St = '1' then
 Acc <= Dbus; -- load upper dividend
 Sign <= Dbus(15);
 State <= 1;
 V <= '0';
 Count <= 0; -- initialize overflow
 end if;
 when 1=>
 Q <= Dbus; -- load lower dividend
 State <= 2;
 when 2=>
 Divisor <= Dbus;
 if Sign = '1'then
 -- two's complement Dividend if necessary
 addvec(not Dividend,zero_vector,'1',Dividend,NC,32);
 end case;
end process;
end Signdiv;
end if;
State <= 3;
when 3 =>
 Dividend <= Dividend(30 downto 0) & '0'; -- left shift
 Count <= Count+1;
 State <= 4;
when 4 =>
 if C = '1' then -- C
 v <= '1';
 State <= 0;
 else
 Dividend <= Dividend(30 downto 0) & '0'; -- left shift
 Count <= Count+1;
 State <= 5;
 end if;
when 5 =>
 if C = '1' then -- C
 ACC <= Sum; -- subtract
 Q(0) <= '1';
 else
 Dividend <= Dividend(30 downto 0) & '0'; -- left shift
 if Count = 15 then -- KC'
 count <= 0; State <= 6;
 else Count <= Count+1;
 end if;
 end if;
when 6 =>
 if C = '1' then -- C
 Acc <= Sum; -- subtract
 Q(0) <= '1';
 else if (Sign xor Divisor(15))='1' then -- C'Qneg
 addvec(not Dividend,zero_vector,'1',Dividend,NC,32);
 end if; -- 2's complement Dividend
 state <= 0;
end if;
end case;
end process;
end signdiv;

Steps followed:
Since the 1’s complementer and adder are combinational networks, their operations are
represented by concurrent statements.

ADDVEC is executed any time ACC or compout changes, so Sum and carry are
immediately recomputed.
All the signals that represent register outputs are updated on the rising edge of the clock. For example, ADDVEC is called in states 2 and 6 to store the 2’s complement of the dividend back into the dividend register.

The counter is simulated by an integer signal, count.